2021/11 | Fachbeitrag | Digitalisierung

Managed AI – damit KI-Services zuverlässig funktionieren

KI-basierte Applikationen bieten viele Vorteile. Sie entlasten von repetitiven Aufgaben, beschleunigen Prozesse und erhöhen deren Effizienz. Was dabei viele vergessen: KI-Projekte verlaufen phasenweise. Zunächst ist zu analysieren, ob sich vorhandene Daten, Systeme und Prozesse für die Umsetzung des favorisierten Use Case eignen. Dann gilt es, die Anforderungen an den Prototyp zu definieren, ein Konzept zu erstellen, den besten Lösungsansatz zu entwickeln und den Prototyp in ein Minimum Viable Product (MVP) zu überführen. Dank kontinuierlicher Funktions-, Last- und Integrationstests sind KI-Services in die Betriebsumgebung stabil integrierbar, und der beliebig skalierbare KI-Service lässt sich in Applikationen, Prozesse und Systeme einbinden. In der letzten Phase, dem Produktivbetrieb, scheitern viele KI-Projekte. Darum sind KI-Lösungen über ihren kompletten Lebenszyklus hinweg zu überwachen und bedarfsgerecht anzupassen. Das gelingt am besten mihilfe von Managed AI Services.

Bildquelle: (C) mohamed Hassan / Pixabay

1. Tipp: Stellen Sie eine professionelle Betreuung des KI-Services sicher.

Beantworten Sie zunächst eine grundlegende Frage: Wo wollen Sie den KI-Service betreiben? Im eigenen Rechenzentrum, On-Premises bei einem Dienstleister oder in der Cloud? Entscheidend ist, den KI-Service dabei kontinuierlich zu überwachen und das Modell im Live-Betrieb immer wieder anzupassen. Ein Beispiel: Ein Anlagenbauer nutzt eine KI-Applikation, die verschlissene Bauteile erkennt. Für einen funktionierenden KI-Service sind das Videomaterial der Anlagenüberwachung zu sichten, ein Modell zu erstellen und die KI mit realen Daten so zu trainieren, dass sie Verschleißerscheinungen und Leckagen identifiziert. Kommt eine neue Anlage hinzu, sind das Modell anzupassen und die KI von Neuem zu trainieren. Hierzu braucht es großes Know-how und viele Ressourcen. Sofern das Unternehmen die Managed AI Services eines spezialisierten Dienstleisters in Anspruch nimmt, kann es sich auf sein Tagesgeschäft konzentrieren. Um Re-Training und Produktivstellung kümmern sich die externen Data- und KI-Experten.

2. Tipp: Setzen Sie auf ein interdisziplinäres Team.

Achten Sie darauf, dass der Dienstleister ein interdisziplinäres Team für Sie zusammenstellt, bestehend aus einem Data Scientist oder Machine Learning Engineer, Data Engineer oder Data Architect, Cloud Architect und DevOps Engineer. Der Data Scientist überführt die Aufgabenstellung in automatisierte Verfahren, der Data Engineer erfasst und konsolidiert die benötigten Daten, der Cloud Architect richtet eine sichere, hochverfügbare IT-Infrastruktur ein, und der DevOps Engineer vermittelt zwischen Entwicklung und Betrieb.

3. Tipp: Lassen Sie den KI-Service bedarfsgerecht anpassen.

Um einen KI-Service in den Produktivbetrieb zu überführen, muss das Team reibungslos zusammenarbeiten. Der Data Scientist experimentiert mit Testdaten und entwickelt ein KI-Modell. Der Data Engineer verbindet das trainierte KI-Modell mit realen Betriebsdaten, und der DevOps Engineer begleitet die Produktivstellung. Damit der KI-Service in Echtzeit zuverlässig funktioniert, ist er fortlaufend zu betreuen und zu verbessern. Im Produktivbetrieb erzeugt ein KI-Service eine Vielzahl an Daten. Darum ist zu prüfen, ob das Modell mit den generierten Daten weiterhin plausibel ist. Andernfalls ist es samt seiner Prozesse anzupassen. Hierfür muss der Data Scientist auf vorhandene Betriebsmodelle und -daten zugreifen. Um das angepasste Modell unter der Aufsicht des DevOps Engineers erneut in die Produktivumgebung einzubinden, ist die KI abermals zu trainieren und zu testen. Weil sich äußere Umstände und Anforderungen schlagartig ändern können, müssen Sie in der Lage sein, flexibel zu reagieren. Doch weil im Live-Betrieb Anpassungen im Trial-and-Error-Verfahren tabu sind, eignen sich dafür agile Methoden wie Continuous Integration, Continuous Delivery und Continuous Deployment.

4. Tipp: Vergessen Sie das Monitoring nicht.

Um Anpassungsbedarf zu erkennen, ist der KI-Service End-to-End zu monitoren - bis hin zum 24/7-Monitoring. Wichtig ist, dass der Dienstleister individuelle Kennzahlen, Mess- und Schwellenwerte definiert und diese im Rahmen des IT-Servicemanagements in Standardprozesse gemäß ITIL einbindet. Dabei stellt das Monitoring der Infrastruktur eine optimale Verfügbarkeit, Erreichbarkeit, Performance und Auslastung durch Event- und Incident-Management-Prozesse sicher. Das Monitoring der Applikationen erfolgt mittels Überwachung der Schnittstellen und regelmäßiger Abfragen. Monitoring ist sehr wichtig, um Anpassungen im Zweifel wieder zurücksetzen zu können. Trotz Voranalysen kann es passieren, dass sich ein KI-Service in Ihrer realen Betriebsumgebung anders verhält als angenommen. Dann ist es entscheidend, schnell wieder auf die Vorgänger-Version umzustellen.

5. Tipp: Stellen Sie ein Maximum an Flexibilität sicher.

Zudem ist es wichtig, einen Vendor Lock zu vermeiden. Darum sollte der Dienstleister das Modell so anlegen, dass sich ein KI-Service auf eine andere Infrastruktur übertragen lässt: eine andere Cloud, eine On-Premises-Lösung in einem Rechenzentrum oder den Betrieb auf eigenen Servern. Idealerweise stellt der Dienstleister das fertige Modell über eine API bereit, betreibt und überwacht den KI-Service und bietet begleitenden Support.

Fazit: Nicht ohne den passenden Partner

Die Herausforderung, KI-Services zu entwickeln, zu betreiben und zu aktualisieren, können viele Unternehmen nicht allein bewältigen. Wer mit einem professionellen Dienstleister zusammenarbeitet, sollte darauf achten, dass er Managed AI Services aus einer Hand bietet, großes Fachwissen hat und den Übergang von der Entwicklung in den Betrieb nahtlos gestaltet. So können Sie sich auf den jeweiligen Use Case konzentrieren, relevante Prozesse spürbar beschleunigen und Ihr Business wirkungsvoll vorantreiben.


Die Autoren:

Niels Pothmann ist Head of AI von Arvato Systems.

Andree Kupka ist Machine Learning Engineer bei Arvato Systems.

Web: www.arvato-systems.de

Diese Artikel könnten Sie auch interessieren

KI im Recruiting: So können Organisationen ChatGPT & Co. für die Personalgewinnung nutzen

WISSENplus
Umfragen sprechen eine klare Sprache: Nichts bedroht unseren Wohlstand so sehr, wie der sich von Jahr zu Jahr verstärkende Fachkräftemangel. Während die Komplexität, Arbeits- und Nebenkosten steigen, gehen die Alten in Rente und die wenigen Jungen scheinen kaum für normale Arbeiten motivierbar. Viele Betriebe hoffen auf KI, um die demografische Lücke zu füllen. Fürs Recruiting interessant ist ...

Weiterlesen

Chatbots und virtuelle Assistenten: Die neuen Helden im Kundenservice und Vertrieb

WISSENplus
Immer mehr Unternehmen setzen heute intelligente Technologien wie Chatbots oder virtuelle Assistenten ein. Deren Möglichkeiten sind mittlerweile vielfältig und können so im Rahmen einer ganzheitlichen CRM-Strategie einen großen Beitrag leisten, die Kundenzufriedenheit zu steigern. Darüber hinaus entlasten sie Mitarbeiter von Routineaufgaben und können einen wesentlichen Beitrag leisten, den Gesc...

Weiterlesen

Künstliche Intelligenz erfindet das Corporate Learning neu: 4 Praxisbeispiele

Wissensvermittlung ist ein zentraler Aspekt für Unternehmen - vom Onboarding über Fortbildungen bis zur Einführung neuer Prozesse und Programme. Der Einsatz von KI zur Erstellung von Inhalten und Betreuung der Mitarbeitenden eröffnet dabei völlig neue Möglichkeiten zu intuitiven Lernerlebnissen, die das Personal fördern und Unternehmen entlasten Vier Anwendungsfälle aus der Praxis zeigen, wie die T...

Weiterlesen

Microsoft Security: Kostenvorteile gekonnt ausschöpfen

Viele Unternehmen stehen derzeit vor der Herausforderung, ihre Security-Infrastruktur zu modernisieren. Denn die Bedrohungslage im Cyberraum ist so angespannt wie nie zuvor, so der aktuelle BSI-Lagebericht. Cyberkriminelle greifen überall dort an, wo sie mit wenig Aufwand lukrative Beute erzielen können. Dabei setzen sie modernste Technologie ein und wenden immer raffiniertere Methoden an. Beim soge...

Weiterlesen

Trends und Megatrends verändern Organisationsumwelten: Was bedeutet das für die Kompetenzentwicklung?

WISSENplus
Übergeordnete Entwicklungen wie demografischer Wandel, Digitalisierung und Globalisierung sowie der damit einhergehende Wertewandel verändern die Organisationsumwelten und damit auch unser Verständnis von (beruflichem) Learning. Diese Veränderungen beeinflussen maßgeblich die Qualität der Bildung, die entscheidend ist, um den Fachkräftebedarf zu sichern und im Arbeitsmarkt konkurrenzfähig zu b...

Weiterlesen

Generationenübergreifend ein attraktiver Arbeitgeber sein

WISSENplus
In den meisten Betrieben arbeiten vier Generationen mit teils unterschiedlichen Werten und Bedürfnissen zusammen. Entsprechend herausfordernd ist es für Unternehmen, für alle Mitarbeitenden ein attraktiver Arbeitgeber zu sein und zu bleiben - speziell, wenn diese viele Joboptionen haben. ...

Weiterlesen

Revolutionär – Digital – Erfolgreich: Wie Teams es schaffen, sich die Digitalisierung für ihre Arbeit zu Nutze zu machen

WISSENplus
Privat nutzen wir schon längst jeden Tag die Vorteile der digitalen Welt - mit nur einem Tool, dem Smartphone, organisieren wir unser halbes Leben, unser Verhalten haben wir daran angepasst. Auch beruflich digitalisieren wir zunehmend, aber unsere Arbeitsweisen sind seit fast 100 Jahren gleich. KI erhöht den Druck für Unternehmen, sich zu modernisieren. Doch die beste Technik hilft nicht, wenn man ...

Weiterlesen

Mein Recht auf Unbeobachtung

"Upps, ein Streifenwagen!" Das hat sich vermutlich jeder Autofahrer schon mal gedacht und dabei sicherheitshalber auf den Tacho geblickt. Selbst wenn wir uns regelkonform verhalten, zeigt sich in solchen Momenten sehr deutlich der Unterschied zwischen beobachteter und unbeobachteter Freiheit. - Ein Kommentar von Alain Blaes - ...

Weiterlesen