2021/11 | Fachbeitrag | Digitalisierung

Managed AI – damit KI-Services zuverlässig funktionieren

KI-basierte Applikationen bieten viele Vorteile. Sie entlasten von repetitiven Aufgaben, beschleunigen Prozesse und erhöhen deren Effizienz. Was dabei viele vergessen: KI-Projekte verlaufen phasenweise. Zunächst ist zu analysieren, ob sich vorhandene Daten, Systeme und Prozesse für die Umsetzung des favorisierten Use Case eignen. Dann gilt es, die Anforderungen an den Prototyp zu definieren, ein Konzept zu erstellen, den besten Lösungsansatz zu entwickeln und den Prototyp in ein Minimum Viable Product (MVP) zu überführen. Dank kontinuierlicher Funktions-, Last- und Integrationstests sind KI-Services in die Betriebsumgebung stabil integrierbar, und der beliebig skalierbare KI-Service lässt sich in Applikationen, Prozesse und Systeme einbinden. In der letzten Phase, dem Produktivbetrieb, scheitern viele KI-Projekte. Darum sind KI-Lösungen über ihren kompletten Lebenszyklus hinweg zu überwachen und bedarfsgerecht anzupassen. Das gelingt am besten mihilfe von Managed AI Services.

Bildquelle: (C) mohamed Hassan / Pixabay

1. Tipp: Stellen Sie eine professionelle Betreuung des KI-Services sicher.

Beantworten Sie zunächst eine grundlegende Frage: Wo wollen Sie den KI-Service betreiben? Im eigenen Rechenzentrum, On-Premises bei einem Dienstleister oder in der Cloud? Entscheidend ist, den KI-Service dabei kontinuierlich zu überwachen und das Modell im Live-Betrieb immer wieder anzupassen. Ein Beispiel: Ein Anlagenbauer nutzt eine KI-Applikation, die verschlissene Bauteile erkennt. Für einen funktionierenden KI-Service sind das Videomaterial der Anlagenüberwachung zu sichten, ein Modell zu erstellen und die KI mit realen Daten so zu trainieren, dass sie Verschleißerscheinungen und Leckagen identifiziert. Kommt eine neue Anlage hinzu, sind das Modell anzupassen und die KI von Neuem zu trainieren. Hierzu braucht es großes Know-how und viele Ressourcen. Sofern das Unternehmen die Managed AI Services eines spezialisierten Dienstleisters in Anspruch nimmt, kann es sich auf sein Tagesgeschäft konzentrieren. Um Re-Training und Produktivstellung kümmern sich die externen Data- und KI-Experten.

2. Tipp: Setzen Sie auf ein interdisziplinäres Team.

Achten Sie darauf, dass der Dienstleister ein interdisziplinäres Team für Sie zusammenstellt, bestehend aus einem Data Scientist oder Machine Learning Engineer, Data Engineer oder Data Architect, Cloud Architect und DevOps Engineer. Der Data Scientist überführt die Aufgabenstellung in automatisierte Verfahren, der Data Engineer erfasst und konsolidiert die benötigten Daten, der Cloud Architect richtet eine sichere, hochverfügbare IT-Infrastruktur ein, und der DevOps Engineer vermittelt zwischen Entwicklung und Betrieb.

3. Tipp: Lassen Sie den KI-Service bedarfsgerecht anpassen.

Um einen KI-Service in den Produktivbetrieb zu überführen, muss das Team reibungslos zusammenarbeiten. Der Data Scientist experimentiert mit Testdaten und entwickelt ein KI-Modell. Der Data Engineer verbindet das trainierte KI-Modell mit realen Betriebsdaten, und der DevOps Engineer begleitet die Produktivstellung. Damit der KI-Service in Echtzeit zuverlässig funktioniert, ist er fortlaufend zu betreuen und zu verbessern. Im Produktivbetrieb erzeugt ein KI-Service eine Vielzahl an Daten. Darum ist zu prüfen, ob das Modell mit den generierten Daten weiterhin plausibel ist. Andernfalls ist es samt seiner Prozesse anzupassen. Hierfür muss der Data Scientist auf vorhandene Betriebsmodelle und -daten zugreifen. Um das angepasste Modell unter der Aufsicht des DevOps Engineers erneut in die Produktivumgebung einzubinden, ist die KI abermals zu trainieren und zu testen. Weil sich äußere Umstände und Anforderungen schlagartig ändern können, müssen Sie in der Lage sein, flexibel zu reagieren. Doch weil im Live-Betrieb Anpassungen im Trial-and-Error-Verfahren tabu sind, eignen sich dafür agile Methoden wie Continuous Integration, Continuous Delivery und Continuous Deployment.

4. Tipp: Vergessen Sie das Monitoring nicht.

Um Anpassungsbedarf zu erkennen, ist der KI-Service End-to-End zu monitoren - bis hin zum 24/7-Monitoring. Wichtig ist, dass der Dienstleister individuelle Kennzahlen, Mess- und Schwellenwerte definiert und diese im Rahmen des IT-Servicemanagements in Standardprozesse gemäß ITIL einbindet. Dabei stellt das Monitoring der Infrastruktur eine optimale Verfügbarkeit, Erreichbarkeit, Performance und Auslastung durch Event- und Incident-Management-Prozesse sicher. Das Monitoring der Applikationen erfolgt mittels Überwachung der Schnittstellen und regelmäßiger Abfragen. Monitoring ist sehr wichtig, um Anpassungen im Zweifel wieder zurücksetzen zu können. Trotz Voranalysen kann es passieren, dass sich ein KI-Service in Ihrer realen Betriebsumgebung anders verhält als angenommen. Dann ist es entscheidend, schnell wieder auf die Vorgänger-Version umzustellen.

5. Tipp: Stellen Sie ein Maximum an Flexibilität sicher.

Zudem ist es wichtig, einen Vendor Lock zu vermeiden. Darum sollte der Dienstleister das Modell so anlegen, dass sich ein KI-Service auf eine andere Infrastruktur übertragen lässt: eine andere Cloud, eine On-Premises-Lösung in einem Rechenzentrum oder den Betrieb auf eigenen Servern. Idealerweise stellt der Dienstleister das fertige Modell über eine API bereit, betreibt und überwacht den KI-Service und bietet begleitenden Support.

Fazit: Nicht ohne den passenden Partner

Die Herausforderung, KI-Services zu entwickeln, zu betreiben und zu aktualisieren, können viele Unternehmen nicht allein bewältigen. Wer mit einem professionellen Dienstleister zusammenarbeitet, sollte darauf achten, dass er Managed AI Services aus einer Hand bietet, großes Fachwissen hat und den Übergang von der Entwicklung in den Betrieb nahtlos gestaltet. So können Sie sich auf den jeweiligen Use Case konzentrieren, relevante Prozesse spürbar beschleunigen und Ihr Business wirkungsvoll vorantreiben.


Die Autoren:

Niels Pothmann ist Head of AI von Arvato Systems.

Andree Kupka ist Machine Learning Engineer bei Arvato Systems.

Web: www.arvato-systems.de

Diese Artikel könnten Sie auch interessieren

Digitalisierung – die Achillesferse Deutschlands

WISSENplus
Die Welt wird immer komplexer und es wird zunehmend schwierig, das Richtige zu tun, sich für den richtigen Weg zu entscheiden. Wir erhalten immer mehr Informationen und verstehen bzw. sehen nicht, was das Richtige und eigentlich Wichtige ist. Als Resultat entscheiden schlichtweg gar nicht mehr und das wiederum führt zu unzureichender Führung. Und so dümpeln viele kleine und mittlere Betriebe, aber...

Weiterlesen

War for Talents: Recruiting in der Generation Remote

Sowohl das Onboarding als auch die Austrittsgespräche finden heute remote statt: Die Besprechung von Beförderungen, Gratifikationen oder Vorteilsprogrammen für Mitarbeitende per Videocall, und auch zu Feedbackgesprächen trifft man sich vor der Kamera - das Arbeitsleben der HR-Manager*innen und Personalabteilungen hat sich grundlegend geändert. Und nichts ist so herausfordernd, wie Personal aus Distanz...

Weiterlesen

Ab in die Cloud - jetzt aber richtig!

WISSENplus
Cloud Computing ist eine Schlüsseltechnologie für die nächsten Schritte der digitalen Transformation. Dabei ist die Technologie seit Jahren am Markt verfügbar. Also alter Wein in neuen Schläuchen? Keineswegs. Bislang ging es oft um das bloße Verlagern von Anwendungen aus Rechenzentren in die Cloud. Doch moderne Ansätze bieten mehr. Ihr ganzes Potenzial spielt die Cloud erst aus, wenn Entwicklun...

Weiterlesen

Roadmap: Mit diesen 5 Schritten gelingt Ihnen die digitale Transformation

Die digitale Transformation ist ein fortlaufender Prozess mit vielen möglichen Wegen zum Erfolg. Unternehmen, die es richtig anpacken, können laut IBM ihre Betriebskosten um bis zu 70 Prozent senken, die Lagerkosten halbieren und den Umsatz um 20 Prozent steigern. Damit der Digitalisierungsprozess in Ihrem Unternehmen gelingt, sollten Sie jeodch erst einige grundlegende Fragen klären: Welche Ressourcen b...

Weiterlesen

Personalisierter, autorisierter Zugang zu Informationen - mit dem Need-to-know-Prinzip

Die tägliche Datenflut hat viele negative Folgen. Zwei Konsequenzen stechen jedoch als besonders nachteilig und gefährlich heraus: Erstens überfordert sie viele Menschen mit einer Unmenge für sie unnötiger Daten, aus denen sie relevante Informationen erst mühsam und zeitaufwändig herausfiltern müssen. Und zweitens birgt sie enorme Sicherheitsrisiken, weil häufig vertrauliche oder sicherheitsreleva...

Weiterlesen

Fünf Tipps, damit Fachkräfte nicht mehr abgeworben werden

Aufgrund des anhaltenden Fachkräftemangels fällt es Firmen zunehmend schwer, ihr qualifiziertes Fachpersonal an sich zu binden und sich vor Abwerbungen zu schützen. Dieser Trend ist jedoch fatal, das Unternehmen angesichts des Fachkräftemangels und der demografischen Entwicklung von ihrem von ihrem Personal abhängig sind. Um das Abwerben zu verhindern, sollten sie ihren Mitarbeitern folglich gute ...

Weiterlesen

Präsenz, online, hybrid: Corona hat das Recruiting nachhaltig verändert

WISSENplus
Bisher waren digitale Recruitingprozesse in Deutschland weitgehend auf Online-Bewerbersysteme beschränkt, d.h. auf den Prozess der Stellenausschreibung und die Verwaltung der Unterlagen und des Recruitingprozesses in Form von Workflows oder aber Online-Tests. Virtuelle Interviews waren hingegen eher unüblich. Eine aktuelle Studie der Unternehmensberatung Kienbaum zeigt jedoch, dass während der Cor...

Weiterlesen

Mitarbeiterwissen für alle: 8 Tipps für den Know-how-Transfer

WISSENplus
Für den mittel- und langfristigen Unternehmenserfolg sind zwei Aspekte ganz entscheidend: kompetente, hoch motivierte Mitarbeiter und eine starke Innovationskraft. Beides lässt sich nur erreichen, wenn das im Unternehmen vorhandene "Gewusst-wie" jedem Beschäftigten - in entsprechend aufbereiteter Form - zur Verfügung stellt und eigene Erfahrungen eingebracht werden können. Dabei darf es...

Weiterlesen