2020/8 | Fachbeitrag | Künstliche Intelligenz / Robotic

KI-basiertes Input Management macht Dokumentenprozesse effektiver

von Daniel Szlapka

Inhaltsübersicht:

Für Unternehmen, die täglich hunderte Seiten automatisch verarbeiten sowie Dutzende verschiedene Dokumentenklassen beherrschen müssen, also Banken, Versicherungen, Telekom- und Energiedienstleister oder Verlage, ist Input Management eine tägliche und wiederkehrende Aufgabe: Hunderte Dokumente, die sie häufig noch in Papierform erreichen, werden in Poststellen mit Scannern automatisiert ins Dokumentenmanagementsystem eingespeist. Die Systeme müssen die Daten digital erfassen, auswerten, klassifizieren und dem richtigen Prozess, Vorgang, Kundenkonto oder Mitarbeiter zuordnen. Vor allem bei Unternehmen, die zahlreiche verschiedene dokumentenbasierte Prozesse administrieren, werden Input Management-Lösungen häufig immer fehleranfälliger und verursachen wieder so viel Zeitaufwand wie früher die manuelle Bearbeitung. Denn Dokumente, Inhalte, Bearbeiter, Prozesse und Formate sowie Dokumentenklassen ändern sich schneller, als einmal eingerichtete Input Management Systeme dem Wandel folgen oder angepasst werden können. Die Präzision, also die richtige Zuordnung, lässt nach, der Automatisierungsgrad des Systems reduziert sich immer mehr. Irgendwann kommen die meisten Nutzer solcher Altsysteme zu der Entscheidung, dass nur die Flucht nach vorne hilft und ein neues Input Management weiterhilft.

Next Generation Input Management On-Premises, in der Cloud oder hybrid

Der Wertbeitrag von Next Generation Input Management liegt vor allem im organisationalen Fortschritt. Veraltete und monolithische Lösungen beschäftigen in vielen Unternehmen mittlerweile einen Aufwand ganzer Abteilungen für die Nachbearbeitung der Dokumentenklassifikation. Ihre Systeme können dem Wachstum nicht mehr Schritt halten, sind unflexibel und haben häufig ohnehin das Ende ihres Lebenszyklus erreicht. Unternehmen, die bisher viel Zeit mit Überwachung und Korrekturen ihres Input Managements aufwenden, machen mit Next Generation Input Management auf jeden Fall einen großen Schritt auf dem Weg zu einer Ende-zu-Ende Digitalisierung ihrer Prozesse.

Ob On-Premise, nativ in der Cloud oder in einer hybriden Installation, innovative Input Management-Lösungen sind variabel einsetzbar. Sie bieten den Anwendern eine hohe Nutzer-Experience, funktionieren mit jedem Standardbrowser, sind selbstverständlich responsive programmiert und lassen sich daher mit ihrer grafischen Benutzeroberfläche (GUI, Graphic User Interface) von jedem Endgerät mit Internetzugang aus nutzen. Vor allem integrieren sie KI-Funktionen, die bei der Datenextraktion und Klassifizierung von Dokumenten in der Praxis unverzichtbare Vorteile bieten.

Selbstlernende KI steigert Treffsicherheit

Je nachdem, welche Dokumentenklassen, Prozesse und Bearbeiter in einem Unternehmen bestehen und wie umfangreich Rechnungen, Schadenmitteilungen, Anträge oder gar Verträge sind und extrahiert werden müssen, um sie richtig zuzuordnen, muss ein IMS sehr agil und leistungsfähig sein. Auf Standardfunktionen wie optische Texterkennung mittels OCR kommt es weiterhin an. Wichtiger aber ist ein Verständnis natürlicher Sprache (Natural Language Processing, NLP), um Inhalte richtig zu verstehen, sie also auszuwerten, um sie dann erst zuzuordnen.

Für diese anspruchsvollen Aufgaben kommen in fortschrittlichen Input Management Lösungen KI-Algorithmen zum Einsatz, die bei der semantischen und kognitiven Interpretation von Texten bereits sehr nah an den menschlichen Verstand heranreichen. Natürlich muss ein solches System zunächst für die Kundenanforderungen konfiguriert und für die verschiedenen Dokumentenklassen "angelernt" werden. Dafür braucht es Trainingsdaten, mit denen die KI mit den zuvor definierten Regeln lernt. Durch menschliche Korrekturen eignet sich die KI das "Wissen" an, wie sie künftig die Regeln anwenden soll. Aber anders als die bisher meisten KI-Algorithmen arbeiten diese nicht als eine Black Box, deren Ergebnisse im Idealfall immer besser werden; im "worst case" kann sich die KI aber auch ohne Kontrolle "überlernen" oder durch Falscheingaben verschlechtern. Die Konsequenz daraus ist, dass die Performance sinkt.

Bei einem innovativen Input Management lassen sich die Wege der Lernerfolge mittlerweile automatisiert zurückverfolgen und feinsteuern. Denn: Die KI-Algorithmen lernen aus den eigenen Fehlern und werden so immer schlauer. Die Erkennungsrate und die Präzision steigen und damit auch der Automatisierungsgrad.

KI orientiert sich am Menschen und verbessert sich automatisch

Die komplexen Funktionen dahinter basieren auf maschinellem Lernen (Machine Learning, ML). Die Klassifizierung und Erkennung von Dokumenten mit ML erfolgt im laufenden Produktivbetrieb mit den eingehenden Dokumenten sowohl mit einem überwachten als auch mit einem unbeaufsichtigten kontinuierlichen Training. Beim überwachten Lernen analysieren die Sachbearbeiter die Klassifikationen der ihnen zugeordneten Dokumente, korrigieren Falscheinträge oder unzulässige Interpretationen und bewerten sie. Mit diesen Korrekturen oder Freigaben geben sie den KI-Algorithmen auch neue Muster oder modifizieren bisher gelernte Regeln. Diese Korrekturen nutzt die KI, um mit unbeaufsichtigtem Lernen sich selbständig zu verbessern. Die Algorithmen verfeinern damit ihre Erkennungsleistung im laufenden Produktivbetrieb. Damit generiert die KI zusätzliches Wissen über Regeln und Ausnahmen und baut sie in ihre weitere Anwendung ein. Die KI lernt also einerseits selbsttätig, orientiert sich aber am Menschen und das bei einer größtmöglichen Transparenz und Nachvollziehbarkeit ihrer Lernerfolge.

„Supervised Learning“ verhindert Gefahr des Überlernens

Schon nach kurzer Zeit können solche Input Management-Lösungen eine Erkennungsrate von bis zu 95 Prozent und eine Präzision von bis zu 99 Prozent erreichen. Bei täglich 1.000 Dokumenten wären dann nur noch bei 50 bis 60 Dokumenten nach der Klassifikation Korrekturen durch den Menschen notwendig.

Und das bedeutet gleichzeitig, dass mindestens 940 Dokumente und deren Inhalte aus Formularen und Tabellen, Zahlen, Handschriften und unterschiedlich lange Texte, von Einzeilern bis zu mehrseitigen Verträgen, richtig eingescannt, ausgewertet und automatisch richtig klassifiziert sind. Sie liegen dann dem richtigen Bearbeiter vor, die Daten sind in den richtigen Zielsystemen beziehungsweisen elektronischen Kundenakten angekommen. Für die Arbeit der Mitarbeiter in Schadenabteilungen oder Kundencentern bedeutet dies, dass sie die Dokumente in ihrem digitalen Workflow nahtlos bearbeiten können. Der interne Aufwand für Nachfragen oder die Suche nach Dokumenten entfällt. Alleine auf dieser Basis kann ein KI-basiertes Input Management je nach Unternehmensgröße schnell Einsparungen von mehreren Hunderttausend Euro pro Jahr erzielen, wie Praxisbeispiele zeigen: Ein IT-Dienstleister für Banken, der jährlich über 30 Millionen Seiten mit 120 Dokumentenklassen verarbeitet, erreichte nach Installation, Konfiguration und dem Anlernen einen Automatisierungsgrad von 89 Prozent und eine Präzision von 97,5 Prozent. Das Unternehmen berechnete nach Einführung eines solchen IMS eine Einsparung von 350.000 Euro pro Jahr. Ein anderer IT-Dienstleister für Versicherungen, der unter anderem hoch komplexe Kfz-Schadenakten mit 200 Feldern und sieben Tabellen in rund 15 Millionen Seiten automatisiert mit einem Input Management System verarbeitet, senkte seine Verarbeitungszeiten um 50 Prozent. Alle Dokumente sind zudem rechtssicher archiviert. Die Einhaltung von Compliance-Vorschriften, Datenschutz- und steuerrechtliche Aufbewahrungspflichten sind gleichsam nebenbei erfüllt.

Event-Tipp: Wer mehr zum Thema wissen will, die DTI bietet dazu am 08.09.2020 um 10.00 h einen Webcast an. Mehr dazu unter https://dti.ch/webcast

 

 

Diese Artikel könnten Sie auch interessieren

IT-Security im Spannungsfeld von KI, Krisen und Compliance

WISSENplus
Neue Technologien bringen stets zusätzliche Risiken mit sich, die verstärkte Investitionen in die IT-Sicherheit erfordern. Das ist bei KI nicht anders. Allerdings birgt sie gleichzeitig auch enormes Potenzial für neue, ausgefeilte Abwehrmechanismen mit hohem Automatisierungsgrad....

Weiterlesen

Next Generation: Advanced Analytics – mehr als „nur“ BI

WISSENplus
Daten gelten schon seit längerem als das neue Gold. Doch Unmengen an Informationen lediglich zu erheben und zu speichern, genügt noch lange nicht. Um von ihrem Datenfundus gewinnbringend zu profitieren, müssen Unternehmen ihre Bestandsinformationen konsolidieren und auswerten, um aus den gewonnenen Erkenntnissen die richtigen Entscheidungen ableiten und systematisieren zu können. In diesem Kontext...

Weiterlesen

Mit GenAI gegen den demografischen Wandel?

WISSENplus
Wenn erfahrene Teammitglieder das Unternehmen verlassen - altersbedingt oder durch einen Jobwechsel -, droht erfolgsentscheidendes Fachwissen verloren zu gehen. Eine geeignete, KI-basierte Wissensstrategie bietet Organisationen die Chance, Spezialkenntnisse systematisch zu erfassen, kontextbezogen verfügbar zu machen und Mitarbeitenden wertvolle Unterstützung an die Hand zu geben. ...

Weiterlesen

Von Pilotprojekten zur Strategie: In vier Stufen zur erfolgreichen KI-Transformation

Auch wenn Künstliche Intelligenz auf jeder Agenda steht, bleiben viele der angestoßenen Initiativen hinter ihren Erwartungen zurück. Der Grund ist selten technischer Natur, die Probleme liegen vielmehr in einem Vorgehen, das KI als isolierte Projekte und Einzelmaßnahmen versteht. Ein vierstufiges Framework zeigt, wie sich mit einem AI-First-Ansatz erste Experimente zu einem tragenden Element der Infrast...

Weiterlesen

Wie Führungskräfte bei Festo die richtigen Worte finden

WISSENplus
Ob im Feedbackgespräch, beim Konfliktmanagement oder bei schwierigen Zielvereinbarungen: Führungskräfte stehen zunehmend unter Druck, in kritischen Gesprächssituationen souverän zu agieren. Doch wie lassen sich diese Soft Skills effizient und praxisnah schulen, insbesondere in global agierenden Unternehmen? Der Automatisierungsspezialist Festo setzt auf eine KI-gestützte Lösung, die realistische...

Weiterlesen

Schluss mit halbherziger Digitalisierung!

WISSENplus
Auf Server Nr. 1 eine E-Mail versenden, mit Tool Nr. 2 ein neues Projekt erfassen und in Software Nr. 3 Rechnungen verwalten - für alle digitalen Prozesse gibt es unterschiedliche Insellösungen. Unternehmen sind sich häufig nicht bewusst, wie zeitaufwändig und kostenintensiv eine derart verteilte Softwarelandschaft ist. Enterprise-Content-Management (ECM)-Systeme arbeiten anders: Intelligent vern...

Weiterlesen

Reguliert bis ins Backend: Datenbanken als Herzstück digitaler Compliance

WISSENplus
Die Umsetzung neuer Regularien wie DORA, NIS2 oder des EU AI Act stellt Unternehmen vor vielfältige Herausforderungen. Die erforderliche Stärkung der Resilienz betrifft die gesamte IT, auch Datenbanken sind davon betroffen. Ihre Absicherung ist von entscheidender Bedeutung und Automatisierung ist dabei ein wichtiges Hilfsmittel....

Weiterlesen

Studie: HR blickt positiv in eine digitalere Zukunft

Wie sieht eigentlich das "Neue Normal" in den Personalabteilungen aus? Gibt es bleibende Veränderungen oder geht es nach dem Krisenmanagement wieder zurück zu "business as usual"? Im Rahmen einer meta | five Studie wurden daher im Mai 2020 rund 50 Unternehmensvertreter, vorwiegend führende Mitarbeitende aus Personal-Abteilungen verschiedener Branchen dazu befragt, inwieweit sich ihr beruflicher Alltag du...

Weiterlesen