2021/11 | Fachbeitrag | Digitalisierung

Managed AI – damit KI-Services zuverlässig funktionieren

KI-basierte Applikationen bieten viele Vorteile. Sie entlasten von repetitiven Aufgaben, beschleunigen Prozesse und erhöhen deren Effizienz. Was dabei viele vergessen: KI-Projekte verlaufen phasenweise. Zunächst ist zu analysieren, ob sich vorhandene Daten, Systeme und Prozesse für die Umsetzung des favorisierten Use Case eignen. Dann gilt es, die Anforderungen an den Prototyp zu definieren, ein Konzept zu erstellen, den besten Lösungsansatz zu entwickeln und den Prototyp in ein Minimum Viable Product (MVP) zu überführen. Dank kontinuierlicher Funktions-, Last- und Integrationstests sind KI-Services in die Betriebsumgebung stabil integrierbar, und der beliebig skalierbare KI-Service lässt sich in Applikationen, Prozesse und Systeme einbinden. In der letzten Phase, dem Produktivbetrieb, scheitern viele KI-Projekte. Darum sind KI-Lösungen über ihren kompletten Lebenszyklus hinweg zu überwachen und bedarfsgerecht anzupassen. Das gelingt am besten mihilfe von Managed AI Services.

Bildquelle: (C) mohamed Hassan / Pixabay

1. Tipp: Stellen Sie eine professionelle Betreuung des KI-Services sicher.

Beantworten Sie zunächst eine grundlegende Frage: Wo wollen Sie den KI-Service betreiben? Im eigenen Rechenzentrum, On-Premises bei einem Dienstleister oder in der Cloud? Entscheidend ist, den KI-Service dabei kontinuierlich zu überwachen und das Modell im Live-Betrieb immer wieder anzupassen. Ein Beispiel: Ein Anlagenbauer nutzt eine KI-Applikation, die verschlissene Bauteile erkennt. Für einen funktionierenden KI-Service sind das Videomaterial der Anlagenüberwachung zu sichten, ein Modell zu erstellen und die KI mit realen Daten so zu trainieren, dass sie Verschleißerscheinungen und Leckagen identifiziert. Kommt eine neue Anlage hinzu, sind das Modell anzupassen und die KI von Neuem zu trainieren. Hierzu braucht es großes Know-how und viele Ressourcen. Sofern das Unternehmen die Managed AI Services eines spezialisierten Dienstleisters in Anspruch nimmt, kann es sich auf sein Tagesgeschäft konzentrieren. Um Re-Training und Produktivstellung kümmern sich die externen Data- und KI-Experten.

2. Tipp: Setzen Sie auf ein interdisziplinäres Team.

Achten Sie darauf, dass der Dienstleister ein interdisziplinäres Team für Sie zusammenstellt, bestehend aus einem Data Scientist oder Machine Learning Engineer, Data Engineer oder Data Architect, Cloud Architect und DevOps Engineer. Der Data Scientist überführt die Aufgabenstellung in automatisierte Verfahren, der Data Engineer erfasst und konsolidiert die benötigten Daten, der Cloud Architect richtet eine sichere, hochverfügbare IT-Infrastruktur ein, und der DevOps Engineer vermittelt zwischen Entwicklung und Betrieb.

3. Tipp: Lassen Sie den KI-Service bedarfsgerecht anpassen.

Um einen KI-Service in den Produktivbetrieb zu überführen, muss das Team reibungslos zusammenarbeiten. Der Data Scientist experimentiert mit Testdaten und entwickelt ein KI-Modell. Der Data Engineer verbindet das trainierte KI-Modell mit realen Betriebsdaten, und der DevOps Engineer begleitet die Produktivstellung. Damit der KI-Service in Echtzeit zuverlässig funktioniert, ist er fortlaufend zu betreuen und zu verbessern. Im Produktivbetrieb erzeugt ein KI-Service eine Vielzahl an Daten. Darum ist zu prüfen, ob das Modell mit den generierten Daten weiterhin plausibel ist. Andernfalls ist es samt seiner Prozesse anzupassen. Hierfür muss der Data Scientist auf vorhandene Betriebsmodelle und -daten zugreifen. Um das angepasste Modell unter der Aufsicht des DevOps Engineers erneut in die Produktivumgebung einzubinden, ist die KI abermals zu trainieren und zu testen. Weil sich äußere Umstände und Anforderungen schlagartig ändern können, müssen Sie in der Lage sein, flexibel zu reagieren. Doch weil im Live-Betrieb Anpassungen im Trial-and-Error-Verfahren tabu sind, eignen sich dafür agile Methoden wie Continuous Integration, Continuous Delivery und Continuous Deployment.

4. Tipp: Vergessen Sie das Monitoring nicht.

Um Anpassungsbedarf zu erkennen, ist der KI-Service End-to-End zu monitoren - bis hin zum 24/7-Monitoring. Wichtig ist, dass der Dienstleister individuelle Kennzahlen, Mess- und Schwellenwerte definiert und diese im Rahmen des IT-Servicemanagements in Standardprozesse gemäß ITIL einbindet. Dabei stellt das Monitoring der Infrastruktur eine optimale Verfügbarkeit, Erreichbarkeit, Performance und Auslastung durch Event- und Incident-Management-Prozesse sicher. Das Monitoring der Applikationen erfolgt mittels Überwachung der Schnittstellen und regelmäßiger Abfragen. Monitoring ist sehr wichtig, um Anpassungen im Zweifel wieder zurücksetzen zu können. Trotz Voranalysen kann es passieren, dass sich ein KI-Service in Ihrer realen Betriebsumgebung anders verhält als angenommen. Dann ist es entscheidend, schnell wieder auf die Vorgänger-Version umzustellen.

5. Tipp: Stellen Sie ein Maximum an Flexibilität sicher.

Zudem ist es wichtig, einen Vendor Lock zu vermeiden. Darum sollte der Dienstleister das Modell so anlegen, dass sich ein KI-Service auf eine andere Infrastruktur übertragen lässt: eine andere Cloud, eine On-Premises-Lösung in einem Rechenzentrum oder den Betrieb auf eigenen Servern. Idealerweise stellt der Dienstleister das fertige Modell über eine API bereit, betreibt und überwacht den KI-Service und bietet begleitenden Support.

Fazit: Nicht ohne den passenden Partner

Die Herausforderung, KI-Services zu entwickeln, zu betreiben und zu aktualisieren, können viele Unternehmen nicht allein bewältigen. Wer mit einem professionellen Dienstleister zusammenarbeitet, sollte darauf achten, dass er Managed AI Services aus einer Hand bietet, großes Fachwissen hat und den Übergang von der Entwicklung in den Betrieb nahtlos gestaltet. So können Sie sich auf den jeweiligen Use Case konzentrieren, relevante Prozesse spürbar beschleunigen und Ihr Business wirkungsvoll vorantreiben.


Die Autoren:

Niels Pothmann ist Head of AI von Arvato Systems.

Andree Kupka ist Machine Learning Engineer bei Arvato Systems.

Web: www.arvato-systems.de

Diese Artikel könnten Sie auch interessieren

Online lernen: Von der Notlösung zum Neuen Normal

Die Corona-Pandemie hat auch die berufliche Weiterbildung verändert. Plötzlich waren außer dem Arbeiten im Homeoffice auch Schulungen im virtuellen Raum möglich. Damit einher ging ein Nachdenken über das Lernen der Zukunft. Dieses wird einen hybriden Charakter haben. ...

Weiterlesen

New Work: Neue Arbeitskultur braucht begleitenden Kompetenzaufbau

Vor Corona war es ein Buzz Word. Nun wird es ernst. In der Pandemie waren fast alle Schreibtisch- und Wissensarbeiter im Homeoffice. Während es einige gar nicht erwarten können, wieder ins Büro zu gehen, will vor allem die Generationen Y weiterhin zuhause und mobil arbeiten. Die neue zeitliche und räumliche Flexibilität ist zusammen mit agiler Projektarbeit, flachen Hierarchien und Reduktion der ...

Weiterlesen

Die sechs häufigsten Datenschutzfehler in Unternehmen

Datenschutz, Informationssicherheit und die DSGVO: Immer wieder passieren Unternehmen die gleichen Fehler und Fehlinterpretationen. Die Konsequenzen reichen von kleinen Unannehmlichkeiten für die Firma oder deren Kunden über negative Bewertungen auf Vergleichsportalen bis hin zu teuren Bußgeldern. Über welche Fallstricke viele Firmen stolpern und wie Sie es besser machen können, zeigen die folgenden s...

Weiterlesen

5 Fakten, die für Business Messenger sprechen

Dezentrales Arbeiten ist zwar (noch) kein Standard in Unternehmen, aber weitaus mehr als eine Ausnahme. Ein elementarer Faktor, den diese Arbeitsform neu prägt, ist die interne Kommunikation. Trotz aller Flexibilität von New Work: Ein hohes Nachrichtenaufkommen und unterschiedlichste Kommunikationstools erschweren es Kollegen, Informationen zu überblicken. Hinzu kommt die Herausforderung, mobile A...

Weiterlesen

Verwaltung 4.0: Administrative Prozesse agil gestalten

WISSENplus
Der Verwaltung, insbesondere der öffentlichen, haftet der Ruf "unflexibel" an. Doch sie agiert meist in einem komplexen, von Interessengegensätzen geprägten Umfeld. Zudem muss sie bei ihrer Arbeit zahlreiche Vorgaben beachten. Das erschwert ein agiles Handeln....

Weiterlesen

Robotic Selling: Kundenverhalten treffsicher vorhersagen

WISSENplus
In Customer Data Platforms (CDPs) bündeln Unternehmen ihre Kundendaten und schaffen damit eine Basis für die Kommunikationsaktivitäten der Marketingabteilung. Die neue Generation dieser Plattformen geht darüber aber noch einen entscheidenden Schritt hinaus. Sie konsolidieren nicht nur Kundendaten - sie verbinden Marketing- und Vertriebsaktivitäten und unterstützen damit die intelligente Automati...

Weiterlesen

Der digitale Arbeitsplatz mit Google Workspace

WISSENplus
Das Jahr 2020 hat viele Überlegungen enorm beschleunigt, die sich Organisationen über die Zukunft der Arbeit gemacht haben. Über Nacht mussten Unternehmen ihre Software einem Härtetest unterziehen. Nicht wenige stellten dabei fest, dass ihre Lösungen für die neue Situation nicht gut ausgelegt waren: nicht skalierbar, zu unsicher, zu unflexibel. Und auch nach der Pandemie werden diese Themen uns ...

Weiterlesen

Corona – und dann?

WISSENplus
Aktuell hat das Corona-Virus Politik und Gesellschaft noch fest im Griff. Es gilt, die Pandemie bis zur flächendeckenden Impfung der Bevölkerung so gut wie möglich in den Griff zu bekommen. Doch viele Unternehmen sind bereits einen Schritt weiter. Sie haben schon im Blick, was nach Corona kommt. Sicher ist bislang nur eines: Nichts wird mehr so wie vorher sein. Diese radikale Veränderung beinhalte...

Weiterlesen